

1

Abstract

Cross-domain models are important in

natural language processing for their ability

to train on one domain’s data and apply it

to other domain(s). This project seeks to

look at the data aspect of cross-domain

model performance, focusing on the

different cases of resource availability and

domain data similarity on the overall ability

to accurately be transferred across

domains. This project specifically trains a

cross-domain classifier that is analyzed on

two different domain datasets. 5 different

experiments in data are tested to train the

classifier, each having their own

advantages and disadvantages for use in

training models.

1 Introduction

In this section, I will discuss the problem that I

wish to help with, the model I will be

experimenting with, and how the model can help

with the problem.

1.1 Introduction to the Problem

Training language models can be both

computationally expensive and data resource

reliant. For simpler models, these problems may

not be as apparent, but larger models can take

much more time, funding, and data to train.

Counting the Cost of Training Large Language

Models (Morgan, 2022) shows the time and

money required to train particular LLMs. They

can take upwards of $10,937,500 to fund and

110.5 days to train. Models may also require large

amounts of labeled/unlabeled training data that

may be limitedly available.

Identifying Transferable Information Across

Domains for Cross-domain Sentiment

Classification (Sharma et al., 2018) discusses that,

generally, models must be retrained to learn new

domain data: an impractical, expensive, and time-

consuming task when there has been much work

put into the previous domains’ classifier. They

discuss a method that allows us to reuse the

previous work: cross-domain classifiers. While not

a new concept, cross-domain models are designed

to mitigate this expensive problem

1.2 Introduction to Cross-Domain Models

To introduce cross-domain models, let me provide

an example. Suppose we are creating a sentiment

classification model on product reviews. Let us say

we have a model already trained on one category

of product reviews, but we do not have one trained

for another category. Through cross-domain

models, we can reuse the resources we trained the

first model on to develop a model that can identify

the target domain.

Cross-domain models are models trained on one

domain or data source and utilized on another

domain. In this report, I often call the domain we

train on the original domain and call the domain(s)

we intend to apply it to the target domain(s). We

can save resources by using past work on another

our original domain without training an entirely

new model. We can also save resources by training

a model with both the original and target domain(s)

in mind.

There are some obstacles to training cross-

domain models, however. Most prominently is that

there are special considerations you must have in

data sources and planning when using a cross-

domain model; applying the model to another

Analyzing Cross-Domain Sentiment Classifiers: The Impact of Data

Amount and Utilization

Robert Rainey

University of Memphis, Memphis TN

rarainey@memphis.edu

2

domain will not always have sufficient accuracy.

For example, target domain-specific information

will likely not be understood by the cross-domain

model because the data does not exist in the

original domain. How do we account for this

problem and more?

1.3 Motivation

As stated, to cut down on computational costs

and/or limited data samples, we can use

cross-domain models to transfer past work to target

domains. Still, this is often not as simple as just

applying it to the other domain; we need to adapt

our target data to work with the model.

In this project, I want to discuss and experiment

with different cross-domain sentiment classifier

training techniques. I want to find ways in which

we can improve cross-domain accuracy,

specifically focusing on the different ranges of data

available. This will help gauge how much data

quantity (and, in some cases, quality) will affect a

model's performance.

I also wanted to see if domain similarity affected

cross-domain performance in a significant way. Do

two domains that share real-world “common

attributes” perform better than dissimilar domains?

Think, for example, electronics and video game

product reviews. One might classify them as

similar categories in our understandings of them.

To this end, I will train a sentiment classifier for

one dataset and apply it two others: one more

“similar” semantically to the original dataset and

the other more “different.”

2 Data

I use the Amazon Review Data (2018) dataset

located at:

https://nijianmo.github.io/amazon/index.html

(Ni et al., 2019).

It includes Amazon review data from May 1996

to Oct. 2018 divided into different categories of

items. The three review categories I use are the

electronics, video games, and grocery/gourmet

food datasets. More specifically, I use the 5-core

dataset versions of these datasets, meaning that

each product that has reviews in the dataset has at

least 5 reviews and that each reviewer has reviewed

at least 5 items. This downsizes the file size

tremendously and leaves reviews that are more

likely to be thorough (as the reviewers are not one-

time reviewers).

The files are in JSON format and need to be

extracted before they are used. I simply used a ZIP

extractor like 7Zip to extract the files before use.

The electronics dataset will train the cross-

domain classifier. The other two datasets will be

the target domains. Models will be trained on the

two target domains to test their performance

against the cross-domain classifier. Electronics and

video games are designed to be the two "similar"

domains while grocery/gourmet is the outlier.

Intuitively, we might expect an electronics

classifier to work better on the video game domain

than the grocery domain.

There are 6,739,590 electronics reviews,

497,577 video games reviews, and 1,143,860

grocer/gourmet food reviews. Each review has the

following structure:

{"image": ["https://images-na.ssl-images-

amazon.com/images/I/71eG75FTJJL._S

Y88.jpg",

"overall": 5.0,

"vote": "2",

"verified": True,

"reviewTime": "01 1, 2018",

"reviewerID": "AUI6WTTT0QZYS",

"asin": "5120053084",

"style": {"Size:": "Large", "Color:":

"Charcoal"},

"reviewerName": "Abbey",

"reviewText": "I now have 4 of the 5

available colors of this shirt... ",

"summary": "Comfy, flattering, discreet--

highly recommended!",

"unixReviewTime": 1514764800}

As I am training the model to classify the

rating based on the review’s text, we only need to

focus on two attributes: reviewText and overall.

“reviewText” is the review’s text (what we

identify). “overall” is the rating given to the review

(the class we want to associate with the

reviewText).

Now that we have the data, we need to format

it for both easier use and better information

extraction from the model.

3 Preprocessing

There are three types of preprocessing that need to

be done: file preprocessing, splitting, and data

preprocessing.

https://nijianmo.github.io/amazon/index.html

3

3.1 File Preprocessing

The files for the datasets are both very large and

contain information that we do not want in our

training process.

First, reviews with empty reviewText values

need to be culled. Reviews that provide no

reviewText also provide no data to train on,

harming the training process. I read the JSON files

line-by-line and save only the reviews with

reviewText values longer than 3 words. This not

only culls empty reviews, but also removes short

reviews and reduces the file size.

Secondly, the star-based class system proves

hard to train on for a variety of reasons: ambiguity

between some classes (like 4 and 5 stars and 1 and

2 stars) and there are smaller samples of 2-star

reviews than most other classes. To mitigate these

problems, I convert the 5-class system into a 3-

class system. Any reviews with an “overall” value

of 1 or 2 gets a new “overall” of 0 (negative), 3 star

reviews get a score of 1 (neutral), and 4 or 5 star

reviews get a score of 2 (positive).

With these changes, our data is more

informative to the model and the computational

and storage load (from the original larger files) is

reduced.

3.2 Splitting into Training and Testing Sets

Now that the reviews have been filtered and

mapped to simpler classes, they need to be divided

into training and testing sets for each dataset.

Each domain dataset has 120,000 training

samples and 12,000 testing samples. We use a large

amount of samples because we are training the

word vectorization model and classifier model

from scratch (except in one experiment). This split

is the max amount we can split the smallest dataset,

video games, into equal classes.

Each class for the datasets gets fair

representation. There are 40,000 positive, neutral,

and negative reviews each in the training set. There

are 4,000 of each in the training set as well.

In making these splits, the files are shuffled,

ensuring random samples in each run of the dataset

initialization. This is not random per experiment

though. Each experiment has the same samples.

These datasets are saved into new JSON files for

quicker use in the future.

3.3 Data Preprocessing

Now that the reviews have been split for each of the

datasets, the data needs to be preprocessed to

increase training efficiency.

First, the extraneous attributes are removed. As

stated earlier, the only attributes we need to train

the classifiers on are the “reviewText” and

“overall” attributes. A function resaves the data

entries with only these two attributes.

Second, the reviewText itself must be

preprocessed to effectively train the word

vectorization and neural network models. I apply

common data preprocessing techniques. The

reviewText values are lowercased, scrubbed of

non-alphanumeric characters, tokenized, and each

word stemmed (reducing the token to a root-form).

I originally implemented stop-word removal as

well, but I found that it led to slightly worse model

performance in my tests.

An example of a data entry currently:

{“overall”: 2

“reviewText”: [‘thi’, ‘r’, ‘case’, ‘is’, ‘the’,

‘best’, ‘i’ ‘have’]}

Later in the program, when the word vectorization

model is trained, the data is further processed by

converting the reviewTexts into their vector

representations by the word vectorization model.

The vectorized data is then stored in a new class,

ReviewDataset, which is responsible for

converting the data into their tensor

representations. These ReviewDatasets are then

used in PyTorch's DataLoader objects to pass them

to the network model.

4 Model

To train the model, I use Word2Vec embeddings to

vectorize the reviewTexts into a form that the

neural network can use. Each of my experiments

uses different data to train the Word2Vec model

because of the simulations of different quantities of

data available. I set the vector size to 300 in my

Word2Vec models, and I trained them for 10

epochs.

My neural network has two fully-connected layers.

The first takes a dimension of 300 (the number of

embeddings I set for the Word2Vec model) and

outputs a dimension of 128 (the hidden layer

dimension). It uses ReLU. The second layer takes

in a dimension of 128 (the hidden layer dimension)

and outputs 3 dimensions, the 3 different classes.

To do so, it goes through softmax.

4

While there are more robust and accurate

models to train a sentiment classifier on (like

BERT to fine-tune on or LSTMs), my project

focuses more on the effects of different data

qualities and quantities available from the target

domains on the cross-domain classifier. While

performance was important, the number of

experiments and factors promoted a quicker model

that captures the comparisons between

experiments rather than building a slower but

better model.

The model was trained and evaluated on the test

data using cross-entropy loss (since it is a multi-

class classifier) with the Adam optimizer and a

learning rate of 0.001. Each model is trained for 10

epochs. In each epoch, the cross-domain model

(electronics model) is evaluated on the target

domains (video game and grocery test datasets).

5 Experiments

Now that the model and data have been defined,

the project focus is turned back to the cross-domain

perspective.

I divide my project into 5 main experiments,

each with their own distinct use cases and

advantages: the individual electronics model, the

pre-trained word2vec model, the shared word2vec

model, the summary model, and the limited cross-

domain data model.

Each experiment alters the amount and quality

of data available in some way. These give differing

results on cross-domain accuracy and even original

domain accuracy.

5.1 Individual Electronics Model

This model represents the results of applying no

special considerations for cross-domain target

classification. It uses only the electronics model

data as input for both the Word2Vec model and

sentiment classifier network model.

As expected, this does not work well for cross-

domain classification. At epoch 10, the cross-

domain sentiment classifier gets an accuracy of

70% on its own electronics reviews, ~36% on the

video games reviews, and ~39% on the grocery

data.

Comparing this performance to separately

trained video games and grocery models, the target

domain-trained models perform much better on

themselves than the electronics model does on

them. While the electronics model attains an

accuracy of ~36% on the video games data, the

video games model performs at ~68% on itself.

Likewise, the grocery data on the electronics

model performs at ~39% but the grocery model

itself performs at ~74%.

This has a few implications.

Without consideration for cross-domain

classification, the electronics model performs

terribly as a cross-domain classifier. The

individually trained models for video games and

grocery performed much better. This was likely

because there was no representation of the other

two datasets in the electronics model’s word2vec

model. This is important going forward.

Surprisingly, the electronics model performed

worse on the video games model. I think this is due

to the two having perhaps contrasting meanings for

words. Grocery and video games coexist better

because they are likely to have less contrast. For

example, a video game "running fast" is likely a

good thing. An electronic "running fast" could be a

good thing, but in the context, it is equally likely to

be talking about "the battery running fast". The

video game model is also likely harder to learn. It

will consistently perform the worst going forward.

This might indicate that we should not rely on our

own semantics for similarity. There could be

differences in ways we do not immediately

recognize.

The main use case I can see for the individually

trained model is for situations where there is NO

unlabeled training data available for the target

domain and there is enough similarity between the

two domains that the accuracy would not have as

much of a gap. On the plus side, this makes it the

most flexible as it requires nothing from the target

domain. It just might not be able to identify

anything from the target either.

5.2 Pre-trained Word2Vec Model

This model represents a similar case to the last: you

have insufficient target data. A pre-trained

word2vec model is used to help fill in the word

vectorization gaps from the different datasets. I use

the GoogleNews-vectors-negative300 pretrained

word2vec model (Google, 2013). This model is

used to obtain the word embeddings for the data.

The electronics reviews are still used to train the

cross-domain sentiment classifier network.

This model performs much better than the

individually trained model for cross-domain

classification. At epoch 10, the cross-domain

5

sentiment classifier gets an accuracy of around

64% on its own electronics reviews which is a

significant drop from the last model. But, it

performs much better on the other datasets: ~59%

on the video games data and ~59% on the grocery

data.

This model performs much better as a cross-

domain classifier than the individually trained

model. This came at the cost of the original

domain’s accuracy, however, dropping by about

6%. Still, it works better generally due to the pre-

trained model. It is evident that you lose some of

the domain-specific information, especially since

the pre-trained word2vec model was trained on

news articles, not reviews.

Like the individually trained model, its main use

case is for when there is no target-domain

information for the model to use. Its better cross-

domain performance may incentivize its use over

the last.

5.3 Shared Word2Vec Model

This model assumes you have a significant amount

of unlabeled data for the target domains. A new

word2vec model is trained with a combination of

all of the domain’s datasets to train it. The

embeddings, thus, consider all three domain’s

reviewText values.

This gives majorly improved performance

across the board. At epoch 10, the cross-domain

model still performs well on its own original

domain at ~69% accuracy. It also performs better

as a cross-domain classifier for the target domains:

~64% accuracy for the video game dataset and

~65% accuracy for the grocery dataset.

This model has performed the best so far as an

individual classifier and a cross-domain classifier.

Combining the data to create the word2vec gives it

knowledge on more domain-specific language and

how to classify it.

The main use case for this model is if there is a

large amount of unlabeled data for the target

domains. While I contributed an equal amount of

data to the labeled electronics data, experiments

may need to be done to gauge its effectiveness

when given less unlabeled target domain data.

5.4 Summary Model

This is a more unique, data-specific model

proposed in the paper, Making the Best Use of

Review Summary for Sentiment Analysis (Yang et

al., 2020). They state that using user-generated

summaries work just as well as the reviewText

attribute information. Our data has summaries

available, so I wished to test this. This is not a

cross-domain specific test, but I thought it would

perform better since the summaries contained more

general language like "good", "five stars", etc. This

model shares similarities to the shared word2vec

model as we combine the summaries of each

dataset into the word2vec model.

It does perform the best of all the models if you

provide its summaries as testing data. At epoch 10,

it performs at ~71.5% on its original electronics

domain. On the cross-domain targets, it performs

~64.5% on the video games and ~70% on the

grocery dataset.

This model is very good at both cross-domain

and original domain classification, but summaries

on the input data are needed for it to perform well.

Given raw reviews (rather than summaries), it

performs at only ~62% on its own domain while

the target domains score ~57% on video games and

62% on grocery. This is about as good as the pre-

trained model.

This model performs the best of all the models,

but it has the highest requirements, summary of the

input text. This summary generation could maybe

be delegated to AI models, but that could have

problems. It did train much faster because it had

less text but has a niche use case.

5.5 Limited Cross-Domain Data Model

The idea for this model came from the paper,

Cross-Domain Sentiment Classification with

Target Domain Specific Information (Peng et al.,

2018). They state that using a small amount of

domain-specific information will improve cross

domain model performance. I tried this only

between the electronics model and video games

model as I wanted to more so focus on one cross-

domain model this time. I also did not want to

hinder results. I introduced a small sample of 1,200

video game review samples (1% of training

dataset) to the electronics model of 120,000

samples. Now the training set has 121,200

samples.

It performs very well for such a small amount of

labeled samples being introduced. At epoch 10, the

original domain performs well on itself at ~70%

accuracy. On the video game target domain, it

performs with around 62% accuracy. This is not the

best overall, but it is much more flexible than some

past experiments.

6

The model performs surprisingly well on the

video game domain despite the limited labeled

training samples I gave it. The main issue is that it

is labeled data. 1,200 is small in comparison to the

overall model but is still a lot of data. The ratio of

target domain to original domain labeled data may

need to be experimented with.

The main use case is when you have available

but limited labeled data available. If you have a

small amount of labeled data, this model will

perform much better than the individually trained

alternative. If you have a small amount of

unlabeled data instead, you may try experimenting

using it in the shared Word2Vec model but not in

the training of the neural network like done here.

6 Discussion and Takeaways

As seen from the experiments conducted in this

project, cross-domain models can help reduce the

computational and dataset burden that training new

models can have.

However, one must make special preparations to

attain an effective cross-domain classifier for the

target domain. As seen in experiment 1, the model

performs poor when not exposed to any of the

target domains' data.

As seen in experiments 2, 3, and 5, there are

various ways to improve cross-domain accuracy

depending on how much and what kind of data you

have available on the target domain.

2. You can use pre-trained Word2Vec models or

other general resources when you have no target

domain information.

3. You can train effective cross-domain

classifiers if given lots of unlabeled training data

for the target domains.

5. You can train effective cross-domain

classifiers given a small amount of labeled

training data for the target domains.

Experiment 4 shows that there are

unconventional yet effective ways to make your

model perform better by using the summaries.

All the experiments also show that one cannot

rely on their semantic assumptions (like I did)

when picking "similar" datasets. Despite video

games and electronics being similar, electronics

model performed better on the grocery model.

Overall, there are various ways to improve

cross-domain accuracy regardless of the situation

you are in.

7 Access to my Project

My project’s .ipynb file can be found at the link

below. It walks through the entire process.

https://drive.google.com/file/d/1ROB70g

Le9JOt_9MO39oUncAm34VCbcCe/view?usp=d

rive_link

References

Jianmo Ni, Jiacheng Li, and Julian McAuley.

2019. Justifying Recommendations using

Distantly-Labeled Reviews and Fine-Grained

Aspects. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 188–197, Hong Kong,

China. Association for Computational Linguistics.

Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xuanjing

Huang. 2018. Cross-Domain Sentiment

Classification with Target Domain Specific

Information. In Proceedings of the 56th Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 2505–

2513, Melbourne, Australia. Association for

Computational Linguistics.

Raksha Sharma, Pushpak Bhattacharyya, Sandipan

Dandapat, and Himanshu Sharad Bhatt.

2018. Identifying Transferable Information Across

Domains for Cross-domain Sentiment

Classification. In Proceedings of the 56th Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 968–

978, Melbourne, Australia. Association for

Computational Linguistics.

Sen Yang, Leyang Cui, Jun Xie, and Yue Zhang.

2020. Making the Best Use of Review Summary for

Sentiment Analysis. In Proceedings of the 28th

International Conference on Computational

Linguistics, pages 173–184, Barcelona, Spain

(Online). International Committee on

Computational Linguistics.

Google. 2013. Google code archive - long-term storage

for google code project hosting.

Timothy Morgan. 2022. Counting The Cost Of

Training Large Language Models.

https://drive.google.com/file/d/1ROB70gLe9JOt_9MO39oUncAm34VCbcCe/view?usp=drive_link
https://drive.google.com/file/d/1ROB70gLe9JOt_9MO39oUncAm34VCbcCe/view?usp=drive_link
https://drive.google.com/file/d/1ROB70gLe9JOt_9MO39oUncAm34VCbcCe/view?usp=drive_link
https://aclanthology.org/D19-1018
https://aclanthology.org/D19-1018
https://aclanthology.org/D19-1018
https://aclanthology.org/P18-1233
https://aclanthology.org/P18-1233
https://aclanthology.org/P18-1233
https://aclanthology.org/P18-1089
https://aclanthology.org/P18-1089
https://aclanthology.org/P18-1089
https://aclanthology.org/2020.coling-main.15
https://aclanthology.org/2020.coling-main.15
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/

